Scaling Uncertainties in Estimating Canopy Foliar Maintenance Respiration for Black Spruce Ecosystems in Alaska

نویسندگان

  • XINXIAN ZHANG
  • A. DAVID MCGUIRE
  • ROGER W. RUESS
چکیده

A major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of carbon exchange between boreal forest ecosystems and the atmosphere. An understanding of the sources of variability of carbon processes at fine scales and how these contribute to uncertainties in estimating carbon fluxes is relevant to representing these processes at coarse scales. To explore some of the challenges and uncertainties in estimating carbon fluxes at fine to coarse scales, we conducted a modeling analysis of canopy foliar maintenance respiration for black spruce ecosystems of Alaska by scaling empirical hourly models of foliar maintenance respiration (Rm) to estimate canopy foliar Rm for individual stands. We used variation in foliar N concentration among stands to develop hourly stand-specific models and then developed an hourly pooled model. An uncertainty analysis identified that the most important parameter affecting estimates of canopy foliar Rm was one that describes Rm at 0 ◦C per g N, which explained more than 55% of variance in annual estimates of canopy foliar Rm. The comparison of simulated annual canopy foliar Rm identified significant differences between stand-specific and pooled models for each stand. This result indicates that control over foliar N concentration should be considered in models that estimate canopy foliar Rm of black spruce stands across the landscape. In this study, we also temporally scaled the hourly stand-level models to estimate canopy foliar Rm of black spruce stands using mean monthly temperature data. Comparisons of monthly Rm between the hourly and monthly versions of the models indicated that there was very little difference between the estimates of hourly and monthly models, suggesting that hourly models can be aggregated to use monthly input data with little loss of precision. We conclude that uncertainties in the use of a coarse-scale model for estimating canopy foliar Rm at regional scales depend on uncertainties in representing needle-level respiration and on uncertainties in representing the spatial variability of canopy foliar N across a region. The development of spatial data sets of canopy foliar N represents a major challenge in estimating canopy foliar maintenance respiration at regional scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.

The boreal region stores a large proportion of the world's terrestrial carbon (C) and is subject to high-intensity, stand-replacing wildfires that release C and nitrogen (N) stored in biomass and soils through combustion. While severity and extent of fires drives overall emissions, methods for accurately estimating fire severity are poorly tested in this unique region where organic soil combust...

متن کامل

Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates

Climate warming at high latitudes is expected to increase root and microbial respiration and thus cause an increase in soil respiration. We measured the root and microbial components of soil respiration near Fairbanks, Alaska, in 2000 and 2001, in three black spruce (Picea mariana (Mill) B.S.P.) forests. We hypothesized faster decomposition correlates with greater amounts of both root and micro...

متن کامل

The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post...

متن کامل

Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites.

We measured stem respiration rates during and after the 1994 growing season of three common boreal tree species at sites near the northern and southern boundaries of the closed-canopy boreal forest in central Canada. The growth respiration coefficient (r(g); carbon efflux per micro mole of carbon incorporated in structural matter) varied between 0.25 and 0.76, and was greatest for black spruce ...

متن کامل

Automated measurements of CO2 exchange at the moss surface of

change system to measure the net exchange of CO2 at the surfaces of three shady feather moss and three exposed sphagnum moss sites in a black spruce forest during 35 days at the end of the 1995 growing season. Midday gross photosynthesis was 0.5 to 1.0 μmol m s by feather moss and 0.5 to 2.5 μmol m s by sphagnum moss. Photosynthesis by sphagnum moss was reduced by approximately 70% at 0 °C, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004